DOI:10.19344/j.cnki.issn1671-5276.2021.03.024

基于黏塑性本构理论的 SiCp/2009Al 循环本构模型研究

蒋鹏琛,徐颖

(南京航空航天大学能源与动力学院,江苏南京 210016)

摘 要:针对 SiCp/2009Al 复合材料的本构模型建立,开展其室温单轴拉伸试验以及低周疲劳 试验研究,得到其单轴拉伸曲线、稳态滞回曲线。基于 Chaboche 以及 Bodner-Partom 两类黏塑 性本构理论建立其循环本构模型,并将二者对于稳态滞回响应的预测结果进行对比。结果表 明:Chaboche 本构理论对于其稳态滞回曲线整体走势的描述更加准确,预测误差更小,针对该 材料所建立的循环本构模型更具有合理性。 关键词:铝基复合材料:应变控制试验:循环本构模型

中图分类号:TP391.9 文献标志码:B 文章编号:1671-5276(2021)03-0095-04

Research on SiCp/2009Al Cycle Constitutive Model Based on Viscoplastic Theory

JIANG Pengchen, XU Ying

(College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China) Abstract: To establish the constitutive model of SiCp/2009Al composite, the uniaxial tensile test at room temperature and the low cycle fatigue test were carried out, and the uniaxial tensile stress-strain curve and steady-state hysteresis curve were obtained. Based the viscoplastic constitutive theories of Chaboche and Bodner-Partom, the cyclic constitutive models were established, and the prediction results of the steady-state hysteresis curves were set up. The results show that Chaboche's constitutive theory is more accurate in describing the overall trend of the steady-state hysteresis curve with smaller prediction errors, and the Chaboche's cyclic constitutive model for the material is more reasonable.

Keywords: aluminum-based composites; strain control test; cyclic constitutive model

0 引言

碳化硅颗粒增强铝基复合材料理化性能优越,在航空 航天领域的探索应用逐渐深入^[1]。航空发动机部件旋转 会引入大量周期性载荷,疲劳问题不可避免。为了解决 SiCp/2009Al复合材料的疲劳相关问题,探究其循环载荷 下的力学行为,对其投入实际应用有重要的工程意义。

颗粒增强金属基复合材料由于其颗粒的随机排布和 各向同性的特点,在宏观领域往往呈现出与基体材料相似 的性能。根据 T JONG 等人的循环应力应变试验,表明金 属基复合材料的循环软、硬化行为与基体一致,并强烈地 依赖于环境温度和材料所经历的热处理^[2]。为了描述此 类复合材料的力学行为,ZHU 等采用宏观本构模型研究 了 SiCp/Al 材料的塑性流动现象^[3]。根据黄文、聂旭等的 研究成果,碳化硅铝基复合材料在 400℃以上时,单轴拉 伸曲线出现明显的率相关性^[4];DOGHRI I 等^[5]对金属基 复合材料的循环行为进行研究时,也发现了其中的率相关 性。但是经典的弹塑性本构模型无法准确地描述材料力 学行为的率相关性,因此本文从宏观唯象学观点出发,基 于 SiCp/2009Al 复合材料的循环力学特性,采用与应变率 相关的黏塑性本构理论建立其循环本构模型。到目前为止,黏塑性本构理论已经发展出多种比较完备的论点,根据屈服函数是否与流动法则相关联,可以将其分为以 Chaboche 及 Bodner-Partom(后文中简称为 B-P)本构理 论为代表的两类^[6]。

本文以试验为基础研究了 SiCp/2009Al 复合材料在不同 速率下的单轴拉伸响应以及应变率 0.004/s 下的循环滞回响 应,基于 Chaboche 与 B-P 黏塑性本构理论建立了其循环本 构模型,将两类本构模型对稳态滞回曲线的预测结果相对比, 验证了 Chaboche 本构理论对该材料的适用性。

1 应变控制低周疲劳试验

本文研究的对象为粉末冶金制备的 17% SiC 体积分数的 SiCp/2009Al 复合材料,通过挤压成型,经过 500℃固溶处理、淬火、170℃人工时效处理,最后经过 T6 热处理制造而成。其基体材料各组分质量分数如表 1 所示。

	表1	2009 🗧	铝合金材	料质量分	分数单	位 <u>:</u> %
Cu	Si	Fe	Zn	0	杂质	Al
4.06	0.25	0.2	0.1	0.6	0.2	其余

第一作者简介:蒋鹏琛(1994—),男,安徽芜湖人,硕士研究生,研究方向为金属及复合材料的结构强度、疲劳及可靠分析。

基金项目:航空科学基金资助项目(20160252003)

所采用的两类室温矩形截面试验件总长均为 140 mm,其中单轴拉伸试验件试验段长 52 mm,试验段截 面宽 12.5 mm,厚4 mm;疲劳试验件试验段长 30 mm,试验 段截面宽 10 mm,厚4 mm。试验件具体尺寸及加工参数如 图 1、图 2 所示。

图1 拉伸试验件尺寸图

图 2 疲劳试验件尺寸图

单轴拉伸试验在 Instron 电子拉力试验机上进行;轴向应变控制试验使用美国 MTS 电液伺服试验机。试验机 配备载荷传感器与试件串联测量轴向载荷,并配备引伸 计,试验实时记录轴向应力、应变值。所采用试验机如 图 3、图 4 所示。

图 3 Instron 试验机

图 4 MTS 疲劳试验机

单轴拉伸试验采用 0.001/s、0.002/s、0.004/s 三种应 变率进行;应变控制试验所选取的载荷水平为控制应变幅 0.4%、0.5%、0.6%三个等级,三角波加载速率为 0.004/s, 载荷比为-1;所有试验均进行到断裂为止。材料拉伸性 能如表 2 所示。

表 2 SiCp/2009Al 单轴拉伸性能

试样 编号	应变速 率∕s	抗拉强 度/MPa	屈服强 度/MPa	弹性 模量/GPa	延伸率/ %
al		568	440	103	3.3
a2	0.004	561	447	112	4.4
b1		532	422	103	2.2
b2	0.002	566	437	105	3.1
c1	0.001	573	446	104	4.0
c2	0.001	563	429	104	3.8

从表 2 中可以发现, SiCp/2009Al 复合材料较"2"系列铝合金抗拉强度提升了 21.7%~34.9%, 屈服强度提升了 5.3%~17.6%, 延伸率下降了 50.5%~61.4%。可见颗粒的加入使得材料强度提升但是延展性下降。不同速率下材料拉伸曲线、不同载荷下稳态滞回曲线如图 5、图 6 所示。

图 6 低周疲劳稳态滞回曲线

由单轴拉伸试验结果可以看出,在加载速率为0.001~ 0.004/s的范围内,材料的拉伸曲线变化较小,没有出现明显的力学性能差异,表明 SiCp/2009Al 复合材料在室温下与其基体 2009 铝合金类似,对材料的应变速率不敏感,呈现出许多金属室温下的"率无关"特性;曲线的走势与基 (1)

(2)

体相同,开始以一定的弹性模量沿直线上升,随后曲线斜 率下降出现屈服现象,发生塑性行为,随着应力不断增加 达到最高点后发生断裂破坏。

从不同应变幅的稳态循环滞回曲线可以看出,在每个 单独的循环内部,随着外加载荷的变化,材料的应力与应 变同步增大或减小;控制应变幅增大,最大应力随之增大; 每个循环内的曲线形状基本对称,可知材料循环拉压性能 对称。

2 黏塑性本构理论

2.1 Chaboche 本构理论

本文 Chaboche^[7]本构理论采用如下形式:

屈服函数: $F = J_2(\sigma_{ij} - X_{ij}) - R - \sigma_y$ 其流动法则与屈服函数相关联:

 $\frac{\partial F}{\partial E_{\mu}} = \Lambda \cdot \frac{\partial F}{\partial F}$

$$= \Lambda \cdot \frac{1}{\partial \sigma_{ij}}$$

非弹性应变率:

$$\dot{\varepsilon}_{ij}^{p} = \frac{3}{2} \Lambda \left[\frac{\sigma'_{ij} - X'_{ij}}{J_2(\sigma_{ij} - X_{ij})} \right]$$
(3)

$$\Lambda = \left[\Phi(F) \right]^n = \begin{cases} \left(F/K \right)^n & F > 0 \\ 0 & F \le 0 \end{cases}$$
(4)

运动硬化内变量:

$$X_{ij} = \sum X_{ij}^k, k = 1, 2, 3 \cdots$$
 (5)

$$\dot{X}_{ij} = C_k (a_k \varepsilon_{ij}^p - X_{ij}^k p)$$
(6)

各向同性硬化分量:

$$\hat{R} = b(Q - R)p \tag{7}$$

其中:F为屈服函数; σ_y 为初始屈服应力; X_{ij} 为内变量中 的运动硬化背应力分量;R为内变量中的各向同性硬化分 量; Λ 为一个幂函数形式;K为黏性系数;n为黏性指数; σ'_{ij} 和 X'_{ij} 分别为应力 σ_{ij} 和背应力 X_{ij} 的偏量;k为所取背 应力分量的个数; C_k 为无量纲背应力参数; a_k 为具有应力

量纲的背应力参数; p 为等效塑性应变率; J_2 为有效应力 偏量的第2不变量。

2.2 B-P本构模型

B-P本构模型^[8]未与屈服函数相关联。其运动方程 依据位错动力学相关理论将塑性应变率与应力偏量二者 联系起来:

$$D_2^p = D_0 \exp\left[-\left(\frac{Z^2}{3J_2}\right)^n\right] \tag{8}$$

非弹性应变率:

$$\sum_{\substack{i=1\\ i \neq j}}^{n} = D_0 \exp\left[-\frac{1}{2} \left(\frac{Z^2}{3J_2}\right)^n\right] \frac{S_{ij}}{J_2}$$
(9)

各项同性硬化分量的演化方程:

$$\frac{\dot{Z}^{I}}{Z^{I}} = m_{1} \left[Z_{1} - Z'(t) \right] \dot{W}^{P}(t) - A_{1} Z_{1} \left[\frac{Z'(t) - Z_{2}}{Z_{1}} \right]^{r_{1}} (10)$$
运动硬化分量为一个二阶张量与方向张量的积:

$$Z^{D} = \beta_{ij} u_{ij} \qquad (11)$$

$$\dot{\boldsymbol{\beta}}_{ij} = m_2 \left[Z_3 \boldsymbol{u}_{ij} - \boldsymbol{\beta}_{ij} \right] \dot{\boldsymbol{W}}^{\mathrm{P}} - A_2 Z_1 \left[\frac{(\boldsymbol{\beta}_{kl} \boldsymbol{\beta}_{kl})^{1/2}}{Z_1} \right]^{r_2} \boldsymbol{V}_{ij} (12)$$

其中: D_0 为剪应变率极限值, $\varepsilon < 10$ 时, $D_0 = 10^4/s$;n为材料 的率相关特性的黏性指数;Z为材料抵抗塑性变形能力的 内变量, $\exists Z^1 \exists Z^0 \geq 2\pi$; $Z_0 \exists Z^1$ 的初始值, $\exists J$ 和料的屈服应 力相关; $Z_1 \exists Z^1$ 的极限值, $\exists Z_3 \ddagger$ 同决定材料的循环软、硬 化特性; Z_2 为在给定温度下 Z^1 的初始值, $-\Re R Z_2 = Z_0$ 。 $Z_3 \exists Z^0$ 的终值; m_1 为相对于 Z^1 的硬化率; m_2 为相对于 Z^0 的

硬化率; W^{P} 为塑性功率; A_{i} 、 r_{i} 为给定温度下的热恢复系数 与热恢复指数,一般 $A_{1} = A_{2}$, $r_{1} = r_{2}$; u_{ij} 与 V_{ij} 为表示应力状态 方向的张量。

3 SiCp/2009Al 循环滞回曲线预测 与分析

3.1 本构模型参数识别

本文所采用的两类本构模型形式均有 10 个模型参数,根据单轴拉伸试验结果采用遗传算法可初步优化识别 模型参数^[9],再通过应变幅 0.5%低周疲劳试验前 10 个峰 值点的应力、应变数据,即可优化得到其本构模型参数。 本文采用的优化目标函数为

$$M(\boldsymbol{L}) = \frac{1}{N} \sum_{i=1}^{N} \left[\boldsymbol{\sigma}_{\text{test}}(\boldsymbol{\varepsilon}_{i}) - \boldsymbol{\sigma}_{\text{pred}}(\boldsymbol{\varepsilon}_{i}, \boldsymbol{L}) \right]^{2} \quad (13)$$

其中:M(L)为优化目标函数,是优化参数向量 L 的函数, 试验数据为其参数。Chaboche本构模型的 $L = [E,K,n,a_1,a_2,c_1,c_2,\sigma_y,b,Q]$; B-P本构模型的 $L = [E,D_0,Z_0,Z_1,Z_2,Z_3,m_1,m_2,n,v]$; $\sigma_{test}(\varepsilon_i) 与 \sigma_{pred}(\varepsilon_i, L)$ 分别为某一应变下试验应力与预测应力的值; N为所选取的试验点的编号数。当目标函数值为最小时,预测值与试验值差的平方和最小,认为通过优化算法识别得到了本构模型参数。结合试验结果及两类本构理论,采用遗传算法优化得到模型参数如表 3、表 4 所示。

表 3 Chaboche 本构模型参数

模型参数	Κ	n	a_1	a_2	c_1
识别数值	271.2	13.8	233.8	105.5	960.65
模型参数	c_2	σ_y	Ε	b	Q
识别数值	16.3	97.37	103 060	136.3	40.2

表4 B-P本构模型参数

模型参数	Ε	D_0	Z_0	Z_1	Z_2
识别数值	102 000	10 000	700.2	711.6	700.2
模型参数	Z_3	m_1	m_0	n	v
识别数值	512.6	5.059	0.007 2	1.61	0.326

3.2 循环滞回行为预测

依据所识别的本构模型参数,结合两类本构模型对稳态循环滞回曲线进行预测。其预测结果如图 7-图 12 所示。

图 7 应变幅 0.4% Chaboche 模型曲线对比

图 8 应变幅 0.4%B-P 模型曲线对比

图 9 应变幅 0.5% Chaboche 模型曲线对比

图 10 应变幅 0.5%B-P 模型曲线对比

3.3 SiCp/2009Al 循环本构模型对比与分析

对比两类本构理论对于稳态滞回曲线的整体预测结果。Chaboche本构模型对 SiCp/2009Al 复合材料循环滞回行为的描述更加准确,所预测稳态滞回曲线整体变化趋

图 11 应变幅 0.6% Chaboche 模型曲线对比

图 12 应变幅 0.6%B-P 模型曲线对比

势与试验曲线趋于一致,对于材料在稳态滞回行为中弹 性、屈服、强化现象的描述具有更高的合理性;B-P本构模 型预测曲线在屈服点附近未及时发生明显的转折,而是沿 着弹性模量继续上升一部分再发生偏转,即发生相关文 献[10]所提及的 B-P本构理论固有的"偏方"现象。

对比两类本构理论的应力预测误差。对于峰值点应 力值的预测, Chaboche 本构模型与 B-P 本构模型的预测 精度相近, 预测值均与试验结果接近, 但是当应变幅较大 时其误差均有所增大。对于所预测稳态滞回曲线中应力 的最大误差以及整体误差, 由于 B-P 本构模型预测曲线 "偏方"问题的存在, 在转折处会出现非常大的预测偏差, 故在此处产生最大的应力预测误差。此外, 该处附近的较 大误差区域也会导致曲线的整体预测误差提升。因此 Chaboche 本构模型对于 SiCp/2009Al 复合材料循环滞回行为 的预测误差更小。但是在一些情况下, 工程上更加注重对峰 值点应力的预测结果, 此时 B-P 本构模型由于其形式简单、 方便应用、便于计算, 有着实际的工程应用价值。

针对两类本构理论所产生的预测误差进行分析。本 文中 Chaboche 本构模型运动硬化分量只取了两项,针对 大应变幅的情况,其预测应力会高于试验结果,可以通过 增加控制大塑性区域的第3分量以减少预测误差;同时模 型中热恢复项的省略也会对峰值点的应力预测产生影响。 对于 B-P 本构模型的预测误差,相关研究^[11]表明,其本 构理论中缺少黏弹性项及动力恢复项是造成其"偏方"现 象的重要因素。可以对本文所采用的两类本构理论相关 模型进行改进,以达到更好地描述 SiCp/2009Al 复合材料 循环力学行为的效果。

(下转第117页)

pedestrian[J]. IEEE Transactions on Intelligent Vehicles, 2016, 1(4);314-324.

[8] SHIMIZU T, RAKSINCHAROENSAK P. Motion planning via optimization of risk quantified by collision velocity accompanied with AEB activation [C] // 2017 IEEE International Conference on Vehicular Electronics and Safety (ICVES), June 27 – 28, 2017, Vienna, Austria; IEEE, 2017; 19-25. [9] DOI A, BUTSUEN T, NIIBE T, et al. Development of a rear-end collision avoidance system with automatic brake control[J]. JSAE Review, 1994, 15(4): 335-340.

[10] 陆建,张文珺,杨海飞,等. 基于碰撞时间的追尾风险分析[J]. 交通信息与安全,2014,32(5):58-64,76.

收稿日期:2020-10-14

(上接第 98 页)

4 结语

本文对 SiCp/2009Al 复合材料的静拉伸性能、循环力 学性能进行了室温下的试验研究,分析材料的单轴拉伸曲 线以及稳态循环滞回曲线,采用 Chaboche 以及 B-P 本构 理论对其循环滞回响应进行了预测及对比分析,得到如下 结论:

1) SiCp/2009Al 复合材料的强度较"2"系列铝合金有 较大提升,但延展性下降,其静拉伸行为与基体相似在室 温下加载速率 0.001~0.004/s 的范围内体现出"率无关" 的特性;循环力学响应中的应力、应变对应较好,循环拉压 性能对称。

2) Chaboche 本构理论对 SiCp/2009Al 复合材料稳态 滞回曲线预测结果的整体趋势与试验曲线更加一致,预测 误差更小,可以更好地描述该材料循环力学行为。

3) B-P本构理论对 SiCp/2009Al 复合材料稳态滞回 曲线的预测存在明显的"偏方"现象,会对曲线整体预测 结果带来较大的误差。

4)采用遗传算法可以较好地解决本文所选用本构模型中多参数、多方程相互耦合的参数识别问题。本文所识别的模型参数可以很好地描述材料的循环力学行为,具有不错的实用效果。

5)可以通过在两类本构理论中增加相关修正项,以 降低所建立本构模型对 SiCp/2009Al 复合材料循环滞回 行为的预测误差。

参考文献:

[1] 田治宇. 颗粒增强金属基复合材料的研究及应用[J]. 金属材

(上接第100页)

4 结语

本文利用钣金折弯过程中中性层长度不变的特性建 立了钣金折弯数学模型,并对折弯过程进行仿真分析,仿 真与计算结果的对比显示,两者表现出较好的契合性,验 证了所建立的钣金折弯过程数学模型与计算结果的正确 性,同时对出现的误差原因进行了分析,为钣金折弯过程 机械臂末端路径规划提供了理论依据。

参考文献:

[1] ZANELLA A, TONELLO S, PAGELLO E. A planning system to manipulate metal sheets within a workcell simulator[C]// IEEE International Symposium on Assembly & Manufacturing, IEEE, 料与冶金工程,2008,36(1):3-7.

- [2] KANG G Z. A visco-plastic constitutive model for ratcheting of cyclically stable materials and its finite element implementation[J]. Mechanics of Materials, 2004, 36(4):299-312.
- [3] 秦亮,耿小亮,郭运强,等. SiCp/Al 材料力学行为研究的进展[J]. 航空制造技术,2010,53(16):79-82.
- [4] FLEMING W J, TEMIS J M. Numerical simulation of cyclic plasticity and damage of an aluminium metal matrix composite with particulate SiC inclusions [J]. International Journal of Fatigue, 2002, 24(10):1079-1088.
- [5] PIERARD O, DOGHRI I. An enhanced affine formulation and the corresponding numerical algorithms for the mean – field homogenization of elasto – viscoplastic composites [J]. International Journal of Plasticity, 2006, 22(1):131-157.
- [6] 魏洪亮,杨晓光,于慧臣. GH4169 合金高温力学行为本构建 模及参数识别[J]. 材料工程,2005,33(4):42-45.
- [7] 杜京. Ti2AlNb 材料高温低周疲劳力学行为与预测方法研究[D]. 南京:南京航空航天大学,2016.
- [8] 胡绪腾,宋迎东. Bodner-Partom 本构模型材料参数估计新方 法[J]. 机械科学与技术,2009,28(2):196-199.
- [9] 张晶. 基于遗传算法的 Chaboche 模型参数的估计与优化[D]. 沈阳:东北大学,2011.
- [10] 宋迎东,高德平,杨治国. 粉末高温合金黏塑性试验评定与 本构模型参数估计[J]. 航空学报,2002,23(2):162-165.
- [11] 卢孔汉,张宏建,贾鹏超. GH4169 合金的循环本构模型研究[J]. 推进技术,2019,40(2);416-423.

收稿日期:2020-03-30

2013

- [2] 查健. 钣金折弯加工离线编程与仿真系统设计[D]. 镇江:江
- 苏科技大学,2019. [3]张如华,黄智松,尹燕,等. 板料V型弯曲工件端部摆动区域
- 初步研究[J]. 锻压技术,2016,41(10):64-70.
- [4] 樊瑞峰,韩涛. 钣金零件折弯展开长度的计算方法[J]. 郑州 轻工业学院学报(自然科学版),2013,28(1):83-85.
- [5] HAN Z R, XU J, MENG X T. Research on algorithm of springback in sheet metal forming [J]. Advanced Materials Research, 2012, 472/473/474/475:2969-2974.
- [6] 葛辉,秦显柱. SolidWorks 钣金折弯在生产中的应用[J]. 大 众科技,2009,11(10):126-128.

收稿日期:2020-06-10