DOI:10.19344/j.cnki.issn1671-5276.2021.04.016

低成本微型飞行器自动化测量平台的设计与搭建

石健瑜,薛雅丽

(南京航空航天大学 自动化学院,江苏 南京 211106)

摘 要:通过 SolidWorks 设计建模、LabVIEW 软件与传感器配合,完成了一套低成本微型扑翼 飞行器自动化测量平台的设计与搭建,可以对微型扑翼飞行器的运动、变形和力进行测量、采 集和处理,为微型扑翼机的理论和实践提供验证平台。通过力传感器校准与模拟实验表明,该 平台能够完成对微型扑翼机运动过程中各项指标的测试。 关键词:微型扑翼飞行器;自动化测试平台;风洞试验;低成本微型风洞;LabVIEW;测力传感器 中图分类号:TP216⁺.1 文献标志码:B 文章编号:1671-5276(2021)04-0060-04

Design and Construction of Low-cost Micro-aircraft Automated Measurement Platform

SHI Jianyu, XUE Yali

(College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China) Abstract: Through SolidWorks design modeling and integretion of LabVIEW software with sensor, a low-cost micro flapping-wing aircraft automatic measurement platform is designed and built to measure, collect and process the motion, deformation and force of the micro flapping-wing aircraft, which provides a platform for the theory and practice of the micro-flapping-wing aircraft. The force sensor calibration and simulation experiments prove that the designed platform can fulfil the tests of various indicators during the movement of the micro flapping-wing aircraft.

Keywords: micro-flapping-wing aircraft; automated measurement platform; wind tunnel test; low-cost miniature wind tunnel; LabVIEW; force sensor

0 引言

微型飞行器(MAV)是 20 世纪 90 年代发展起来的一 种新型飞行器,因尺寸小、质量轻、成本低、功能强、携带方 便、操作简单等特点,在军事领域和民用领域都有着十分 诱人的应用前景。微型飞行器主要分为 3 种:固定翼、旋 翼机、扑翼机。由于扑翼机不像固定翼飞行器一样有完 整、成熟的理论体系与计算模型和方法,气动计算的可靠 性还有待验证,因此通过风洞试验得到的结果更为真实、 可靠。近年来国内外都建有专门针对微型飞行器设计的 低速、低湍流度风洞。

西北工业大学^[1]为了对微型扑翼机进行研究,研制 了一座微型飞行器专用风洞。该风洞具备较低的稳定风 速,配备了三分量应变式天平,可以对微型飞行器的气动 特性进行研究。上海大学^[2]设计并建造了一座用于研究 MAV 气动力性能的可调低湍流度风洞,具有可变湍流度、低 湍流度、低噪声等特点,并提出将零质量射流技术用于控制 MAV 小展弦比翼型流场,改善了其流动状态。北京航空航天 大学^[3]研制出了一种经济、实用的低速小型风洞实验装置, 可满足各种教学实验和模拟实验以及一般科研工作的需要, 对小型实用风洞的推广应用具有实际意义。

国外低湍流度风洞的研制集中在发达国家。美国斯 坦福大学机械工程系^[4]建造了一个封闭式隧道风洞,隧 综上所述,因常规风洞最低稳定风速太高、雷诺数太 大、湍流度太高的特点,故现有测试设备不适合微型扑翼 飞行器。国内外大学和研究机构近年来已经开始针对微 型飞行器设计小型低湍流度的实验设备,但没有通用的实 验设备可以采用。因此,本文研制了低成本微型扑翼飞行 器气动性能自动化测试平台。

1 风洞洞体设计与搭建

通过 SolidWorks 建模设计并分析,提高设计效率,降低开发成本^[6],风洞模型如图 1 所示。

图 1 SolidWorks 建模

道的各个组件设计为协同工作,以产生均匀速度、均匀温度、低湍流和低噪音的流量。日本福冈工业大学^[3]建造了一种低成本、主动控制的多风扇风洞,有助于使用自然风的实验研究。

第一作者简介:石健瑜(1999—),女,四川成都人,本科,研究方向为自动化。

设计完成后的风洞结构与尺寸如图2所示。

图 2 风洞结构与尺寸

1.1 收缩段

常用的收缩曲线有维特辛斯基收缩曲线、双三次曲线、五次方曲线收缩曲线,对比上述曲线后^[7]采用双三次曲线。收缩段沿着气流方向截面逐渐缩小,入口和出口均为方形,用于给实验段提供均匀的气流。双三次曲线公式如下:

$$\begin{cases} \frac{D-D_2}{D_1-D_2} = 1 - \frac{1}{x_m^2} \left(\frac{X}{L}\right)^3, \left(\frac{X}{L}\right) \le x_m \\ \frac{1}{\left(1-x_m\right)^2} \left[1 - \left(\frac{X}{L}\right)\right]^3, \left(\frac{X}{L}\right) > x_m \end{cases}$$

式中: x_m 为两曲线连接点;L为收缩段的长度;D为出口高或宽; D_1 为进口高或宽。

计算表明,如图1所设计的收缩段流道内流动不出现 分离,且出口速度具有好的均匀度和较低的湍流度。

1.2 稳定段

稳定段内部有蜂窝器和两层阻尼网,用于降低气流横向的湍流度^[8]。蜂窝器的格子采用塑料吸管手工裁剪、 拼接而成。蜂窝器的孔眼圆直径为 10 mm,在稳定段的 截面内大约有 1 600 个蜂窝格子。两层阻尼网间距为 128 mm,采用 30 目的钢丝纱网。

1.3 实验段

实验段的框架由不锈钢制作,侧壁采用透明亚克力板制 作,实验段上部可以打开,便于安装与拆卸实验和测量装置。 下部有预留的开孔,用于安装支撑装置和测量设备。

1.4 扩压段

扩压段是一段沿着气流方向截面积逐渐扩大的管道, 扩散角为 6°,沿着风向截面面积逐渐扩大,出、入口截面 均为方形。入口与实验段连接,出口与动力段连接,把气 流的动能变为压力能。

1.5 扑翼机支撑装置

扑翼机支撑装置设置在实验段处,通过实验段下方开 孔安装。支撑装置的上部有连接装置与扑翼机模型连接, 并且设计有调节机构,可以实现扑翼机模型俯仰角的变 化,通过调节侧壁上预留连接孔的位置,从而控制角度的 变化。底座通过螺栓固定在多轴测力传感器上,并且在与 扑翼机的连接处留有电源线接口,给扑翼机提供稳定的外 接电源。 风洞实物图见图 3。

图 3 风洞实物图

2 测试控制系统的设计与搭建

2.1 测力传感器

针对微型飞行器设计了一个二维高精度的力传感器 测量系统,分别测量牵引力与升力。牵引力和升力测量范 围为-300g~300g(-1.96 N~1.96 N)。测量原理:多轴测 力传感器把采集到的力学信号转化为电压信号,通过数据 采集卡(NI MCC 8 通道,12 位采样)和信号放大电路传入 计算机进行储存与显示。传感器位置位于实验段正下方, 上端直接与支撑装置连接,下部连接一金属块用来减少振 动。示意图^[9]见图 4。

图 4 力传感器示意图

2.2 温度湿度传感器

利用温湿度传感器((RS485)来测量洞体内部的温度 和湿度,通过计算机计算出空气密度,为扑翼机空气动力 学各个参数的关系研究提供参考。

温湿度传感器连接于实验段下端,通过实验段下部的 开孔将传感器的探头伸入实验段,再将接口与计算机连 接,通过计算机进行数据的处理。指标参数:采样速率 0~ 100 k/s。温湿度传感器示意图见图 5。

2.3 高速摄像机

高速相机(GigE)安装于实验段上部的支架上,镜头

正对扑翼机模型,对焦后用于拍摄扑翼机扑动的视频,测量扑翼机的扑动姿态和扑动频率。

2.4 风速调节装置

风洞内部的气流由动力段内风机中的电机带动扇叶 旋转产生,风机配备调速装置,可以实现风速的连续调节, 并以此模拟不同的自然风速条件。利用热线式风速仪可 以采集洞体内部风速的实时变化,接入计算机通过显示面 板实时显示,作为控制风机转速的标准。

2.5 机翼扑动调节装置

扑翼机自带电源无法维持长时间稳定扑动,因此设计 了外接直流电机控制电路。选用 220V AC 转 5V DC 电源 适配器,DC-DC 可调升压稳压电源模块,CCM6N PWM 直 流电机调速器,GA12-N20 减速电动机,可控制电机额定 状态下的转速达 2000 r/min。电路概念图见图 6。

3 LabVIEW 软件程序编写

软件系统基于 LabVIEW 的上位机程序,可实现升力 和牵引力连续高速采集功能。借助 LabVIEW 软件,利用 虚拟软件仿真硬件,进行软件设计:子程序分别通过各传 感器测试计算得到微型扑翼飞行器的升力、牵引力、风速、 温度、湿度、空气密度,同时高像素摄像头进行气流观测和 运动学测量,并通过 LabVIEW 控制风机转速,5 个子程序 封装完成后用状态机完成主流程。

3.1 测力传感器子程序

力传感器模块后面板见图 7。

图 7 力传感器模块后面板

3.2 温湿度传感器子程序

温湿度传感器子程序见图 8。

图 8 温湿度传感器子程序

3.3 高速摄像机子程序

高速摄像机子程序界面见图 9。

图 9 高速摄像机子程序

至此,风洞的软件搭建部分结束。总控制面板见图 10。

图 10 总控制面板

4 软硬件系统调试校准

将已知砝码的质量作为理论值,与力传感器测出的实验值进行对比,完成力传感器的校准实验。实验数据见表1。

表1 升力校准实验数据		
砝码质量/g	所测压力/N	理论压力/N
10	0.095	0.098
20	0.201	0.196
30	0.293	0.294
40	0.387	0.392
50	0.484	0.49

续表1				
砝码质量/g	所测压力/N	理论压力/N		
60	0.595	0.588		
70	0.682	0.686		
80	0.775	0.784		
90	0.886	0.882		
100	0.982	0.980		
110	1.073	1.078		
120	1.181	1.176		
130	1.277	1.274		
140	1.373	1.372		
150	1.464	1.470		
160	1.570	1.568		
170	1.678	1.666		
180	1.770	1.764		
190	1.881	1.862		
200	1.973	1.960		
250	2.457	2.450		
300	2.953	2.940		
350	3.436	3.430		
400	3.935	3.920		
450	4.414	4.410		
500	4.913	4.900		

将实验数据与理论数据作图对比,见图 11。

由图 11 可知,实验数据与砝码理论数据基本重合,校 准成功。

再进行牵引力校准实验,方法同升力校准实验。实验 数据见表2,牵引力校准曲线见图12。

表 2 牵引力校准实验数据				
── 砝码质量/g	测得压力/N	理论压力/N		
0	0	0		
100	0.981	0.98		
200	1.962	1.96		
300	2.931	2.94		
400	3.912	3.92		
500	4.881	4.90		

由图 12 可知,实验曲线与理论曲线基本重合。校准 成功。

因12 平川州仅准网致

微型扑翼飞行器气动性能测试平台的软、硬件搭建及 其校准工作全部完成,可以利用此风洞平台进行扑翼机模 型实验、固定翼实验。

5 结语

本文研制了一套低成本微型扑翼飞行器自动化测量 平台的设计与搭建,其创新点如下:

1)针对微型飞行器设计了一个低成本、低速微小型 开口式直流风洞,可进行风速调节;

2)针对微型飞行器设计了一个二维高精度的力传感 器测量系统;

3)针对扑翼机自带电源无法维持长时间稳定扑动的 限制,设计了外接直流电机控制电路;

4)针对测量需要编写了基于 LabVIEW 的数据采集与 处理软件,可以实时采集传感器里数据并计算和显示。

参考文献:

- [1] 熊超,宋笔锋. 微型扑翼飞行器气动机理风洞试验研究[J].
 科学技术与工程,2007,7(11):2576-2580.
- [2] 李强,丁珏,翁培奋.上海大学低湍流度低速风洞及气动设 计[J].上海大学学报(自然科学版),2007,13(2):203-207.
- [3] 遥路,李华,刘沛清. 实验用低速直流风洞的设计与研究[J]. 科教导刊,2015(4):133-136.
- [4] QUINN D B, WATTS A, NAGLE T, et al. A new low-turbulence wind tunnel for animal and small vehicle flight experiments [J]. Royal Society Open Science, 2017, 4(3):160960.
- [5] KIKUCHI H, MATSUBARA H, PORNTHISARN P, et al. A lowcost active control multi – fan turbulence wind tunnel with an embedded system to generate natural wind [J]. Open Journal of Fluid Dynamics, 2019,9(2):158-167.
- [6] 张小鹏,王洪申,王学丰. 基于 SolidWorks 二次开发的球阀阀 体参数化设计 [J]. 机械制造与自动化, 2020, 49 (1): 91-93,122.
- [7] 郝春生,李汇军,张思聪,等. 微型低湍流标定风洞结构设计 研究[J]. 机械制造与自动化,2020,49(5):109-112,126.
- [8] 余世策, 胡志华, 冀晓华, 等. 小型直流标定风洞的研制[J]. 实验室研究与探索, 2014, 33(3):55-58.
- [9] 沈辉,吉爱红,颜化冰,等.一种二维力/扭矩传感器的设 计[J].传感器与微系统,2006,25(1):63-65.

收稿日期:2021-04-14