DOI:10.19344/j. cnki. issn1671-5276.2024.02.005

侧风作用下不同装载敞车气动性能研究

谢雨江,武振锋

(兰州交通大学 机电工程学院,甘肃 兰州 730070)

摘 要:针对不同装载情况的敞车,开展敞车在空载、半载、满载3种情况下气动性能的研究。研究结果表明:单节敞车 气动力的变化规律与整车气动力的变化规律一致;空载敞车所受的气动阻力最大,半载敞车次之,满载敞车最小;满载 敞车所受的气动升力最大,半载敞车次之,空载敞车最小;3种敞车所受的侧向力非常接近,最大差距仅为1.9%;空载敞 车和半载敞车所受的气动力较为接近,而满载敞车与前两种车型有明显差距。

关键词:铁路货运列车;装载;敞车;气动性能;数值模拟

中图分类号:U272 文献标志码:A 文章编号:1671-5276(2024)02-0025-04

Study on Aerodynamic Performance of Gondola Cars with Different Loadings under Crosswind

XIE Yujiang, WU Zhenfeng

(School of Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

Abstract: According to the different loading conditions of gondola car, the aerodynamic performance of the gondola car under three conditions of empty-load, half-load and full-load was studied. The reserch results show that the change law of the aerodynamic force of a single gondola car is consistent with that of the whole vehicle, the aerodynamic drag of empty-load train is the largest, followed by half-load train, and full-load train is the least. The aerodynamic lift force of full-load train is the largest, half-load train comes to the second, and empty-load train is the least. The lateral forces of the three trains are very close with the biggest difference as merely 1.9%. The aerodynamic force of empty-load and half-load gondola car is relatively close, while full-load gondola car has a significant gap with the former two models.

Keywords: railway freight train; load; gondola car; aerodynamic performance; numerical simulation

0 引言

兰新铁路是我国货物运输的重要通道,由于 特殊的地理位置,兰新铁路经过了多个风区,这些 风区环境恶劣,常年伴有强烈侧风,对我国货运列 车的安全运行带来了威胁。针对侧风作用下货运 列车的气动性能,国内外的众多学者主要作了以 下研究。梁习锋等^[1]基于二维、非定常 N-S 方 程,忽略车辆的转向架,研究了侧风作用下敞车、 棚车、罐车和客车的气动性能。周丹等^[2]基于三 维、非定常 N-S 方程,研究了侧风作用下不同类 型铁路货车在 5 m 路堤上运行时的气动性能。何 华等^[3]基于二维、定常 N-S 方程,忽略了车辆的 转向架,研究了侧风作用下导流板对敞车气动性 能的影响,并对敞车周围的流场进行了分析。金 琦、熊小慧等^[4-5]基于三维、定常 N-S 方程,研究 了侧风作用下篷布对敞车气动性能的影响。 HASSAN H 等^[6]使用大涡模拟法研究了侧风作用 下货运列车的气动性能,得到了机车和集装箱货 车周围的压力、流场分布以及相关的气动参数。

敞车是我国目前应用数量最多、范围最广的 铁路货车,占总体铁路货车数量的 50%以上,具有 非常高的研究价值。虽然有学者研究了侧风作用 下敞车的气动性能,但这些研究或忽略了敞车的 转向架,或仅仅基于二维条件,对三维条件下带有 完整转向架的敞车研究不足。敞车结构特殊,内 部具有巨大的空腔,这就导致了敞车在空载和载 物状态下的外形有所不同。敞车在运输煤炭、道 碴等物品时存在装不满的情况,由于这些物品呈 颗粒状,装在一起时表面缝隙较小,故这种状态下 的敞车可以近似看做空腔装满一半物品的半载状 态;而敞车在运输钢材、机械设备等畏雨物品时通 常会盖篷布,由于本文主要考虑敞车的气动特性, 并不涉及流固耦合问题,故这种状态下的敞车可

基金项目:甘肃省科技厅重点研发计划项目(20YF3GA014)

第一作者简介:谢雨江(1998—),男,山东临沂人,硕士研究生,研究方向为列车空气动力学,2067382109@qq.com。

以近似看做空腔装满物品的满载状态。因此本文 针对侧风条件,对敞车在空载、半载、满载 3 种情 况下的气动性能进行了研究。

1 研究方法

1.1 控制方程

连续性方程、动量守恒方程和能量守恒方程 是控制流体流动的基本方程。本文列车的运行速 度为120 km/h,侧风速度为24.5 m/s,马赫数小于 0.3,空气不可压缩。不可压缩流之间的热量交换 很小,故本文不考虑能量守恒方程。对于恒定流, 在不考虑流体压缩性情况下的连续性方程为

$$\frac{\partial(\rho u_j)}{\partial x_j} = 0 \tag{1}$$

式中: *ρ* 表示流体密度; *x_j*(*j*=1,2,3) 表示直角坐标 系的坐标分量; *u_j*(*j*=1,2,3) 表示直角坐标系中 速度矢量 *u* 沿 *x_i* 方向的分量。动量方程为

$$\frac{\partial(\rho u_i)}{\partial t} + \frac{\partial(\rho u_i u_j)}{\partial x_i} = -\frac{\partial p}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_i}$$
(2)

式中:p表示作用在流体微元体上的压强; τ_{ij} 表示因分子黏性而产生的作用在微元体的黏性应力 张量。

计算流体力学可以较为准确地模拟湍流流动,本文利用软件 Fluent 进行数值模拟。湍流模型选用 SST *k*-ω 模型,其优点是内存消耗低、精度较高、容易收敛,比较适合近壁自由流动问题。为保证计算结果的准确性,采用 SIMPLE 算法求解 雷诺平均 N-S 方程,并用二阶迎风格式对其进行 离散。

1.2 几何模型和网格划分

选取国内某型电力机车分别牵引空载敞车、 半载敞车、满载敞车作为研究对象,对机车的车 窗、车灯、转向架进行了适当的简化;忽略了受电 弓、雨刮器、门把手。参照车钩的基本信息,用长 宽高分别为40 cm、20 cm、16 cm 的长方体代替车 钩^[7]。敞车转向架模型如图1所示,机车模型和 敞车模型如图2所示,机车和敞车的基本尺寸如 表1所示。

图1 敞车转向架模型

图 2 机车模型和敞车模型

表1 机车和敞车的基本尺寸 单位:cm

车型	长度	宽度	高度
机车	2 200	310	408
敞车	1 250	290	312

网格质量对仿真计算收敛性及结果准确性至 关重要^[8]。由于货运列车外形复杂,故利用 Workbench-meshing进行非结构网格划分,然后用 Fluent-meshing将非结构网格转化为多面体网格。 计算域共设有2层加密区,对车体表面、转向架等 区域进行了局部加密,边界层共设有12层,第1 层边界层网格厚度的y+值控制在30~100,计算 域的非结构网格数量在2000万左右,转化为多 面体网格后在400万左右。列车及地面网格如 图3所示。

图 3 列车及地面网格

1.3 计算工况

目前有两种方式可以模拟侧风作用下货运列 车的运行,一种是动网格法,另一种是合成风 法^[9]。本文选用合成风法,列车运行速度 V_1 设置 为120 km/h,侧风速度 V_2 设置为24.5 m/s(10 级 风),侧风角 β 设置为60°,运行工况示意图如图4 所示。

1.4 计算域和边界条件

计算域和边界条件的设置是数值模拟的关

键,参照列车空气动力学性能数值仿真规范,对计 算域的大小和边界条件进行了合理的设置^[10]。 列车计算域为长方体,地面设置为与列车运行速 度大小相等,方向相反的滑移壁面;顶面设置为对 称边界;车体表面设置为无滑移壁面,计算域入口 条件为速度入口,出口条件为压力出口,远场压力 为标准大气压。模型计算域的大小如图 5 所示, 其中 L 表示列车长度。

图 5 模型计算域

1.5 方法可行性验证

为验证本文所采用方法的正确性,参考中南 大学团队利用风洞试验所测得的数据进行可行性 验证。风洞试验的列车为1节机车牵引3节棚 车,路堤高度为5m,来流速度为60m/s,侧滑角分 别为30°、45°、60°、75°、90°。计算数据与文献中 风洞实验的数据对比如图6所示。

图 6 计算数据与文献数据对比

从图 6 可以看出,计算所得到的侧向力及升 力和文献试验结果规律一致,吻合性较好,因此认 为本文所采用的模型和数值计算方法是合理的。

2 计算结果与讨论

2.1 气动力分析

侧风作用下,机车牵引3节空载敞车、半载敞

车、满载敞车所受的气动力如表2所示。

	表 2	气动力数据		单位:kN
车载状况	受力部位	阻力	升力	侧向力
空载	整车	38.14	46.65	94.62
	第1节	9.83	8.39	21.77
	第2节	6.25	8.75	17.35
	第3节	6.42	6.69	14.70
半载	整车	37.81	47.68	96.46
	第1节	9.77	8.64	20.60
	第2节	6.36	8.85	17.84
	第3节	6.82	6.43	15.03
满载	整车	29.44	55.02	95.93
	第1节	5.92	11.02	18.73
	第2节	3.49	13.27	18.07
	第3节	5.06	7.15	15.81

从表2可以看出,空载敞车所受的气动阻力 最大,半载敞车次之,满载敞车所受的气动阻力最 小。其中空载敞车和半载敞车差距较小,差距仅 为0.8%:空载敞车和满载敞车差距较大,差距可 达29.6%。满载敞车所受的气动升力最大,半载 敞车次之,空载敞车最小。其中空载敞车和半载 敞车差距较小,差距仅为2.2%;空载敞车和满载 敞车差距较大,差距可达17.9%。3种敞车所受的 侧向力非常接近,最大差距仅为1.9%。无论是空 载、半载还是满载,每节敞车气动力的变化规律一 致。对于同一种敞车而言,第1节车所受的气动 阻力最大,第3节车次之,第2节车最小;第2节 车所受的气动升力最大,第1节车次之,第3节车 最小:第1节车所受的侧向力最大,第2节车次 之,第3节车最小。值得注意的是,单节敞车气动 力的变化规律与整车气动力的变化规律一致,空 载敞车和半载敞车所受的气动力较为接近,而满 载敞车与前两种车型有明显差距。

2.2 压力流场分析

为分析3种敞车的阻力变化情况,选择前后 都是相同车型的第2节车进行研究,第2节敞车 的头尾部表面压力如图7所示。

从图 7 可以看出,空载敞车和半载敞车的头 尾部压力分布非常相似,这是空载敞车和半载敞 车所受气动阻力非常接近的原因。虽然满载敞车 与前 2 种车的头部压力分布较为相似,但满载敞 车尾部所受的负压明显小于前 2 种车,因此满载 敞车的压差小于前两种车。这是满载敞车所受气 动阻力最小的原因。为分析同种敞车所受升力和 侧向力的变化情况,选择敞车的3种典型横截面 进行研究,第2节空载敞车的前轮、中间、后轮横 截面压力流线图如图8所示。

图 8 第 2 节空载敞车横截面压力流线图

从图 8 可以看出,3 种位置下的空载敞车左 侧都有一个较大的漩涡,且此漩涡随着截面位置 向后移动而向敞车左侧移动。前轮截面和中间截 面的漩涡分布非常类似,敞车空腔内都有一个较 大的漩涡,而后轮截面的漩涡分布则有所不同,敞 车空腔内较大的漩涡分离成 3 个较小的漩涡。产 生这种现象的原因是空气流速的不同,空气流速 快的地方压力小,这也是前轮和中间截面空腔内 的负压明显大于后轮截面的原因。为进一步分析 同种敞车所受升力和侧向力的变化情况,选择流 场变化最为稳定的敞车中间横截面进行分析,每 节空载敞车中间截面压力流线图如图9所示。

图 9 每节空载敞车横截面压力流线图

从图 9 可以看出,随着位置向后移动,敞车迎 风侧的正压会减小,最左侧的漩涡也会向左移动, 这是第 1 节车侧向力最大,第 2 节车次之,第 3 节 车最小的原因。第 3 节敞车空腔内的负压明显小 于前 2 节车,这是第 3 节车升力最小的原因。与 图 8 对比可知,第 3 节敞车空腔内的漩涡也发生 了分离。为进一步分析不同类型敞车所受升力和 侧向力的变化情况,选择流场变化最为明显的敞 车后轮横截面进行分析,3 种敞车的第 2 节敞车 后轮横截面压力流线图如图 10 所示。

图 10 3 种敞车横截面压力流线图

从图 10 可以看出,3 种敞车的流场差异非常 大。3 种敞车顶部漩涡的大小和数量都有所不 同,这也导致了顶部压力有所不同,满载敞车顶部 的负压明显较大,而半载和空载敞车的顶部压力 则较为接近,这也是满载列车所受的升力最大,半 载和空载列车所受的升力差距仅为 2.2%的原因。 值得注意的是,靠近 3 种敞车左侧的漩涡数量都 (下转第 55 页)

- [3] 苏万斌,江叶锋,陈启锐,等. 基于 Abaqus 的电梯制动 器制动轮热应力分析[J]. 新技术新工艺,2021, 404(8):43-48.
- [4] 邓林,吴晓军. 电梯制动器温度与制动力的影响因素 分析[J]. 起重运输机械,2020(9):51-54.
- [5] 郝家琦,徐金海,鲍超超,等. 基于 VMD 与 SVM 的电
 梯鼓式制动器故障诊断研究[J]. 机电工程,2022, 39(1):112-119.
- [6] 梁庆海,贾希胜,白雲杰. 基于 Gamma 过程的制动器 磨损退化建模与剩余寿命预测[J]. 公路与汽运, 2021(5):1-5.
- [7] 季景方,张建辉,范佳能,等.基于回归分析理论的盘 式制动器制动温度预测研究[J].汽车实用技术, 2019(18):75-77.
- [8] 顾昕雨,肖志刚. ARIMA-SVR 组合模型在卫星遥测 参数预测中的应用[J]. 空间科学学报,2022,42(2): 306-312.
- [9] 琚垚,祁林,刘帅. 基于改进乌鸦算法和 ESN 神经网络的短期风电功率预测[J]. 电力系统保护与控制, 2019,47(4):58-64.

- [10] 孟海宁, 童新宇, 石月开, 等. 基于 ARIMA-RNN 组 合模型的云服务器老化预测方法[J]. 通信学报, 2021,42(1):163-171.
- [11] 杨芮,徐虹,文武. 基于 EEMD-GRU 网络模型的短期风速预测[J]. 计算机系统应用, 2022, 31(6): 231-237.
- [12] 窦勇敢,袁晓彤. 基于隐式随机梯度下降优化的联 邦学习[J]. 智能系统学报,2022,17(3):488-495.
- [13] 徐硕,侯贵生. 基于 VAE-D2GAN 的涡扇发动机剩 余使用寿命预测[J]. 计算机集成制造系统,2022, 28(2):417-425.
- [14] 张忠林,张艳. 改进 FA 优化 LSTM 的时序预测模型[J]. 计算机工程与应用,2022,58(11):125-132.
- [15] 陈可嘉,刘惠. 基于改进 BiGRU-CNN 的中文文本分 类方法[J]. 计算机工程,2022,48(5):59-66,73.
- [16] 江涛,刘鑫容,朱耀琴,等. 基于 GAN-CNN 联合网络 的复杂产品费用预测[J]. 电子设计工程,2020, 28(17):174-179,184.

收稿日期:2022-09-09

(上接第28页)

是 3 个,只是大小和位置的不同,3 种敞车两侧的 压力分布非常相似,这是 3 种类型列车侧向力都 非常接近的原因。

3 结语

本文针对不同装载情况下的敞车,开展了敞 车在空载、半载、满载 3 种情况下气动性能的研 究。采用 SIMPLE 算法求解雷诺平均 N-S 方程, 湍流模型采用 SST k-ω模型。研究结果表明:空 载敞车所受的气动阻力最大,半载敞车次之,满载 敞车所受的气动阻力最小;满载敞车所受的气动 升力最大,半载敞车次之,空载敞车最小;3 种敞 车所受的侧向力非常接近,最大差距仅为1.9%; 对于同一种车型而言,每节车所受的气动力也有 所不同;单节敞车气动力的变化规律与整车气动 力的变化规律一致,空载敞车和半载敞车所受的 气动力较为接近,而满载敞车所受的气动力与前 2 种车型有明显差距。此研究结果可为货运列车 的安全运行提供参考。

参考文献:

- [1] 梁习锋,熊小慧.4 种车型横向气动性能分析与比较[J].中南大学学报(自然科学版),2006,37(3):607-612.
- [2] 周丹,田红旗,杨明智,等. 强侧风作用下不同类型铁

路货车在青藏线路堤上运行时的气动性能比较[J]. 铁道学报,2007,29(5):32-36.

- [3] 何华,田红旗,熊小慧,等. 横风作用下敞车的气动性能研究[J]. 中国铁道科学,2006,27(3):73-78.
- [4] 金琦,梁习锋,熊小慧. 横风对篷布气动升力的影响[J]. 铁道科学与工程学报,2010,7(4):96-100.
- [5] 熊小慧,梁习锋,金琦.横风作用下铁路货车篷布气动力数值模拟计算[J].中南大学学报(自然科学版),2015,46(2):728-735.
- [6] HASSAN H, CHRIS B. Large-eddy simulation of the flow around a freight wagon subjected to a crosswind[J]. Computers & Fluids, 2010, 39(10):1944-1956.
- [7] 赵怀瑞. 车辆工程导论[M]. 北京:中国铁道出版社, 2015.
- [8] 李田,秦登,安超,等. 计算网格对列车空气动力学不确定性的影响[J]. 西南交通大学学报,2019,54(4): 816-822.
- [9] PREMOLI A, ROCCHI D, SCHITO P, et al. Comparison between steady and moving railway vehicles subjected to crosswind by CFD analysis [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 156: 29-40.
- [10] TB/T 3503.4—2018 铁路应用空气动力学 第4部分:列车空气动力学性能数值仿真规范[S].

收稿日期:2022-10-10